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Two-dimensional rotational and vibrational temperature measurements were made at the nozzleexit of a free-piston shock tunnel using Planar Laser-Induced Fluorescence. The Mach 7 flow consistedpredominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as theprobe species and was excited at 225 run. Non-uniformities in the distribution of nitric oxide in thetest gas were observed, and concluded to be due to contamination of the test gas by driver gas or coldtest gas. The nozzle-exit rotational temperature was measured and is in reasonable agreement withcomputational modelling. Non-linearities in the detection system were responsible for systematicerrors in the measurements. The vibrational temperature was measured to be constant with distancefrom the nozzle exit, indicating it had frozen during the nozzle expansion.

Introduction
C

RUCIAL 
to the design of future aerospace vehicles isthe accurate prediction of physical and chemical effects

influencing the aerodynamics at hypersonic velocities. Re-
alistic evaluation of hypersonic phenomena on a particular
vehicle design can be managed in one of three ways: flight
tests of actual vehicles; simulation of flight conditions onscale models in ground-based test facilities; or numerical
simulations implementing models of physical and chemical
processes known as computational fluid dynamics (CFD).
The first case is prohibitively expensive and reserved forthe prototype design. Individual ground-based facilities can
only simulate flow conditions for a portion of the flight tra-jectory. The flows produced by such facilities only partially
simulate flight flow conditions. The latter method, CFD, isa promising alternative with the advent of low-cost, high-
power computing resources. However, CFD codes require
validation against experimental data before they can be con-fidently used to predict inflight behaviour and aid in vehicle
design and performance evaluation. The experimental data
must come from the first two methods mentioned above,
therefore emphasising the close relationship that exists be-tween the alternative approaches.

The shock tunnel is a ground-based test facility capableof producing very high enthalpies and shock-layer tempera-
tures. It consists of a converging-diverging nozzle attached
to the end of a shock tube. The performance of the shock
tunnel can be enhanced by employing the free-piston driver
technique,1 thus making it capable of producing chemicallyreacting flow phenomena (real-gas effects). 

S
hock-tunnel

flows generally only last for a few milliseconds due to the
impulse nature of the shock tube, and as necessitated by the
extreme gas temperatures attained.Many optical techniques have been used for flow visuali-
sation in shock tunnels and to complement surface pressureand heat-transfer measurements. Schlieren photography,
shadowgraph and interferometry have been used extensively
to provide two-dimensional measurements with high tempo-
ral resolution. However, they can only provide an integrated

'Postdoctoral Research Associate. Current address: School of Me-
chanical, Materials, Manufacturing Engineering and Management,
University of Nottingham, Nottingham, NG72RD, England. AIAA
Member.

tResearch Scientist. Current address: Mail Stop 236, NASA Lang-
ley Research Center, Hampton VA 23681-2199, USA. AIAA member.

*Senior Lecturer, Department of Physics, The Australian National
University, Canberra, 0200, Australia. AIAA member.

Presented as Paper 98-2703 at the AIAA 20th AIAA Advanced Mea-surement and Crouad Testing Technology Conference, Albuquerque, NM,
Jun. 15-18, 1998; received Jun. 15, 2001; revision received Jul. 25, 2001;accepted for publication Sep. 18, 2001. Copyright © 2001 by the AmericanInstitute of Aeronautics and Astronautics, Inc. No copyright is asserted inthe United States under Title 17, U.S. Code. The U.S. Covernuieut has aroyalty-free license to exercise all rights under the copyright claimed herein
for Covernmental Purposes. All other rights are reserved by the copyright
owner.

measurement along the line-of-sight through the flow which
masks any three-dimensional behaviour in the flow. Pla-
nar laser-induced fluorescence (PLIF) has been widely used
for flow visualisation in subsonic and supersonic flows and
as a combustion diagnostic. 2,3 It provides high spatial and
temporal resolution, two-dimensional quantitative measure-
ments and is chemical species specific. PLIF uses a thin
sheet of laser light to excite a radiative transition in a
particular chemical species in the flow. The laser sheet inter-
rogates a thin (<1 mm) cross section through the flowfield,
allowing PLIF to resolve three-dimensional flow features.The short duration of the laser pulse and resulting fluores-
cence makes PLIF particularly useful for impulse facilities
where the flow may only last for a millisecond.

The high-enthalpy flows produced by freepißton shock
tunnels have a unique set of experimental problems notencountered in other flow facilities. Flows generated by
free-piston shock tunnels have large pressure and temper-
ature variations which cause large fluorescence signal vari-ations due to high collisional quenching rates and changes
to the spectral overlap integral between the laser and theabsorption transition. 4,5 Other problems include excessivelaser-beam absorption which can lead to hole burning of the
laser spectral profile,6 spectral interference from other flow
species and fluorescence trapping. A more severe problem isthat metallic contaminants which are eroded from the shock
tube walls produce strong emission in high-temperature re-gions in the flowfield.? This background emission can easily
overwhelm the fluorescence signals, so careful spectral and
temporal filtering of the signal is necessary. This remainsthe greatest obstacle for the application of PLIF to shock
tunnels.

In order to validate complex flowfields calculated using
CFD codes with experimental data from ground-based facili-
ties, one must have an accurate knowledge of the freestream
conditions produced by the facility. Measurements of ro-
tational and vibrational temperatures, static pressure, ve-
locity, and chemical species number densities are neces-sary to completely specify the thermodynamic state of thefreestream. In the past, CFD codes have been used to pre-
dict these freestream parameters based on calibrations with
pitot-pressure data, but little work has been performed on
testing the validity of these nozzle-flow calculations. In the
current study, we attempt to address this research shortfall
by concentrating our efforts on measuring rotational and
vibrational temperatures for nitric oxide (NO) using PLIF.

The process of validating a CFD code can be a particu-larly arduous one. The methodology and strategies used are
therefore very important. The process of validation should
commence with the study of simple flows (i.e., continuum,
no real-gas effects) and gradually increase complexity of
the flow (i.e., increase Mach number, add chemical effects).



Experiments should be designed to test a single flow phe-
nomenon while minimizing competing effects that may com-plicate data interpretation (cause-and-effect tests). S imple
models can be used to test specific flow phenomena and in
some cases this is more desirable. Following this method-
ology, the flow employed in the experiments presented here
was a low-enthalpy nitrogen flow. The effects of chemistryare removed, simplifying the problem considerably. The vi-
brational temperature freezes during the nozzle expansion,
and the temperature at which this freezing occurs has a sig-
nificant influence on the nozzle-exit rotational temperature.For example, consider the current flow conditions cal-culated with a quasi-one-dimensional inviscid nozz le-flow
code (described later in this article) where the vibrational-
freezing temperature and chemistry can be varied. If we
calculate the two extreme cases for vibrational freezing, one
where the vibrational temperature is held in equilibrium
with the translational temperature throughout the nozz leexpansion and the other where it is frozen at the nozzle-
reservoir temperature, we get 560 K and 345 K, respectively,
for the nozzle-exit rotational temperature. By comparison,
the effect of switching chemistry between equilibrium andnon-equilibrium produces only a 20-K difference at these
operating conditions. Hence, by measuring the rotationaltemperature one can get a measure of how much energy is
stored in the vibrational modes of the test gas, and therefore
infer the vibrational-freezing temperature of N2.

Ideally one would like to measure the vibrational temper-
ature, in this case of N2 since it is the predominant testgas species (for example, using broadband CARS"). Unfor-
tunately in the current work we can only measure the NO
vibrational temperature with PLIF. Since NO is a minority
species in the flow (1%) its vibrational-freezing temperaturehas a negligible effect on the nozzle-exit conditions. It can,
however, be used to test the NO vibrational-energy transferrates used in the nozzle-flow code.

In order to use NO PLIF to measure temperature, a smallamount of NO must be present in the flow. Nitric oxide
is stable and can be easily seeded into the test gas,s° 1ohowever, this is not necessary here because of the high tem-perature (4430 K) achieved in the nozzle-reservoir region.
A small amount of O2 added to the test gas is sufficient to
produce NO at the nozzle exit without the need for han-
dling toxic NO. The O2 dissociates in the nozz le-reservoirregion and recombines with nitrogen atoms to form —

1
%

NO. This value is constant downstream of the nozzle throatas the flow becomes chemically frozen. This approach also
provides an opportunity to test the PLIF technique without
complicating effects from other flow species (e.g., O2), or
from excessive beam attenuation caused by high NO con-
centrations which are typical of air flows.

A recent PLIF study11 on an arc-heated facility at similar
flow conditions to the current experiment produced good
results, however, due to the running time of several hours,
the experimenters were afforded the luxury of scanning theirlaser across many excitation lines to build up a spectrum.They observed vibrational nonequilibrium which was alsoconfirmed by N2-CARS experiments. 12 Very little work has
been performed on impulse facilities due to the difficulties
it entails. The objective of the current work is to explore
these difficulties and develop PLIF to the stage where it can
be used alongside other diagnostics regularly employed onshock tunnels.

PL IF Theore tical C ons iderationsLaser-Induced Fluorescence TheoryThe theory of PLIF is well developed 2,3 and only the
points relevant to the current work will be discussed here. Inparticular, we will present a general theory and then make
approximations which are relevant for the current applica-tion.

In a typical PLIF experiment, a laser is tuned to anoptically-allowed electronic resonance of a particular molec-

ular species. The molecules in a particular electronic-rotational-vibrational level my''J'' (typically the ground
state) are excited to an electronic-rotational-vibrational
level nv'J'. Molecules in the excited level nv'J' can then
emit radiation (fluorescence) which is collected by a detec-
tor (typically a two-dimensional CCD array). Molecules
may also undergo collisions with other molecules or atomswhich cause a transfer of population out of the laser cou-
pled state nv'J' to nearby rotational levels. This is known
as rotational-energy transfer (RET). These collisionally-
excited nearby rotational levels also fluoresce, resultingin a broadband fluorescence signal. Similarly, there may
also be vibrational-energy transfer (VET) from the ex-cited vibrational level. Other collisions may cause some
of the molecules in the excited state to be de-excited non-
radiatively (collisional quenching) which produces a corre-
sponding decrease in the total amount of fluorescence signal.

The number of fluorescence photons reaching a singlepixel of the CCD detector is given by 3

NP = NT xzUV, p,YG(D 4Q qf 	 (
1)

where NT [cm-3] is the number density of absorbers; fB isthe Boltzmann fraction; Bp p, [ s -1 (W/cm2/cm-1)-1] is the
Einstein absorption coefficient for this particular rotational-vibrational transition; E [J] is the energy of the laser pulse;G [ 1 /cm

-1] 
is the spectral overlap integral; (D is the fluores-cence yield; Q is the solid angle subtended by the detector;q is the detection efficiency; and f [cm] is the length of the

interaction volume in the direction of the beam. The inter-
action volume is defined as that volume in the flow whosefluorescence is collected by a single detector pixel. The
length and breadth of the volume are determined by the
dimensions of the pixel, and the depth is determined by the
thickness of the laser sheet.

Each of the parameters in Eq. (
1) shall now be definedin more detail. The number density of absorbers can be

defined by N
T = (pX/kT) where p [Pa] is pressure, X is NO

mole fraction, T [K] is the kinetic temperature and k is the
Boltzmann constant. The Boltzmann fraction is given by

_ 2J'' + 1
	 —1,, 	Gv„fB	 Ztotal exp ( kTot exp kT ib 	

( 2 )

Here, we have indicated the rotational and vibrational con-tributions to fB and made the distinction between the ro-tational temperature Trot and vibrational temperature T ib.Fp, is the rotationally dependent part of the energy of the
absorbing state and Gv,, is the vibrational energy. Ztotal isthe total partition function.

The fluorescence yield (D represents the ratio of de-excitation transitions that produce fluorescence photons tothe total number of de-excitation transitions. It is given by

A e
ff 	 ( 3 )3Atotal + Q

where Aeff [s
-1] 

is the effective spontaneous emission rate
for the collected fluorescence, Atotal [s -1] 

is the sum of spon-
taneous emission rates for all possible radiative transitions
from the excited level, and Q [s

-1] 
is the collisional quench-

ing rate. A eff represents the way that A total is modified
by spectrally selective elements in the detection chain (

e.
g

.,filters, camera quantum efficiency). Therefore the effective
emission rate is given by 13

Aeff = 1: Tv,, Av, v,, , 	 (4 )v,,
where T¹ v,, is the spectral transmission function for the de-tection system at the wavelength A and the summation is
over all vibrational bands of the lower electronic state.



The spectral-overlap integral G [ 1 /cm - 1 ] represents the
degree of overlap between the irradiance lineshape L (v)[ 1 /cm-

1 ] and the absorption lineshape Y (v) [1/cm-1]. Itis given by
G = J Y(v)L(v)dv 	 ( 5 )

where Y (v) and L(v) are both normalised such that
f L (v ) dv = 1 

and f Y (v ) dv = 1. The absorption lineshapedefined above is derived from the definition of the spectralabsorption coefficient, which is given by
k„ = S12Y(v) , 	 ( 6 )

where S i2 
[cm-2] is the line-strength factor for the transi-

tion. With k„ expressed in this manner, S i2 
contains only

terms relating to the transition probability and is indepen-
dent of lineshape effects. The exact form of the lineshapefunction is determined by various spectral-line broadening
processes.Ther mometry

There are many different approaches to LIF thermome-
try,2,3,14 but here we discuss only the method used in the
current experiments. This method is based on the two-l

i
n

eplanar-thermometry technique of McM illin
9 and Palmer. 10Consider the temperature and rotational-level dependence

of each quantity in Eq. (1). Hence, we haveNp a E NT (T) fB(T, J) B(J) G(T, J) (b(T, J) , 	 ( 7 )
where, for simplicity B = BJ,J,,, T = Trot and J = J''.
Now, if we make fluorescence measurements by exciting two
different rotational levels (denoted by numbers 1 and 2 ),
and take the ratio of the signals, we obtain

	Signal Ratio = Npz = C Ez Bz f Bt 	 ( 8 )
p	 fB 2

where C is a constant and we have assumed the quantitiesG (T, J) and (b (T, J) are independent of the excitation level
J and hence any temperature dependence cancels out in
the ratio. Also, we have assumed that the number density
of NO molecules NT(T) remains constant between the twomeasurements and also cancels. We will justify these as-
sumptions below. The laser energy E is not dependent on
J but usually fluctuates from pulse-to-pulse and so is re-
tained for completeness. Equation (8) shows that the only
temperature dependence is through the Boltzmann fraction,and this is the basis of most LIF thermometry techniques.Substituting for fB from Eq. (2) and assuming that each
transition is within the same vibrational band ( i.e., Gv„ isconstant), we obtainNO- CE1B1(2J1 + 1) ex -(FJ1 - FJ2) 	 9Np2	 E2B2(2J2 + 1) p 	 kTrot 	

( )

and, solving for Trot,Trot -	
(FJ2 - FJ1)lk 	 ( 10 )

ln CE2B2( 2 J2+ 1 ) N,1E1B1( 2 J1+ 1 ) Np2 ^
In a typical temperature measurement, one measures thefluorescence signal Np and laser pulse energy E for each

rotational level. Then, using calculated values for FJ„ andBJ,J,,, the temperature can be obtained. This assumes that
the value of C is known or has been determined empirically.When more than two lines are used a Boltzmann plot ofNpln 

EBJ, J„ (2J'' + 1) 	
(
11)M

versus FJ„	 gives a straight line with slope
-1/ (kTrot).	

The y-intercept is ln(C*) where

C* = NT G(bQgf exp( —Gv„/kT ib
) /Ztotai is assumed

to be a constant independent of J.
Vibrational temperature can be measured in an analo-

gous way. Measuring fluorescence images for two or more
transitions with different v'' and plotting

ln K Np	 (
1

2 )EBJ, J„ (2J'' + 1) 
exp(- FJ„ /kTrot ) )

versus Gv„ gives a straight line with slope -1/(kTib). By
keeping FJ„ as constant as possible, its influence is minor,
and the vibrational temperature is therefore determined in-
dependent of the rotational temperature.Assumptions and Cal ib ration

The constant C in Eq. (10) can be written such that all
the quantities related to the detection system are collected
into a new constant C. Hence, we have

C' = Q1g1f1 	 (
1

3 )Q 2 g2 f2

and C = C' NTiGl(bl 	 ( 14 )NT2 G2(b 2

For PLIF thermometry in unsteady or turbulent flows, itis necessary to use two lasers and two cameras. The two
transitions are excited in rapid sequence, thus freezing theflow motion, and ensuring that the flow conditions remain
the same for both measurements (

i. e., 
N

Tl =NT2). However,
for steady or repeatable flows it suffices to use one laser and
camera and assume a degree of flow reproducibility. For
pulsed facilities it is ideal to make the measurements on a
single shot as each tunnel run is not perfectly repeatable. In
the current work the measurements were made over many
tunnel runs because it was not possible due to monetary
constraints to use two laser/camera systems. To reduce theinfluence of shot-to-shot flow variations, five runs were aver-
aged for each transition, and the shock speed was monitored.Tunnel runs where the shock speed varied by more than 

1
%

from the average were rejected. If a single detection system
is used then Q l g l = Q 2 g2, and if we assume perfect flowreproducibility N

Tl =NT2, and therefore C '= 1
.

In Eq. (8), we assumed that the rat ios (b 1 /(b 2 and G 1 1G 2were independent of temperature. This is a good assump-
tion if (b and G are independent of J and reabsorption of
fluorescence is negligible.1' For the A 2 E+ (v' = 0) band of
NO, the spontaneous emission rates and collisional quench-ing rates are independent of rotational quantum number.

isRotational-level-dependent quenching has been observed in
OHA 2 E+ for low-J and temperatures in the range 300-
1200 K. According to Paul et al.19 and based on com-
putational models, it should also manifest in NOA2E+ at
J < 5 when temperatures are less than 300 K. J-dependent
quenching would cause a significant systematic error in
low-temperature NO thermometry if low-J lines were used.
Although low-J lines are used in the current work, system-
atic errors are avoided because the temperatures measured
are greater than 300 K. Hence we have A eff l = A eff2 andQ 1 = Q 2 and therefore (b is also independent of J.

The overlap integral G depends on the laser lineshape
L(v) and the absorption lineshape Y(v). The absorptionline shape, Y(v), is affected by collisional broadening and
shifting,1", 19 Doppler broadening, and Doppler shifts due to
the flow velocity. Only the Doppler broadening varies with Jbut for transitions in the same vibrational band, va l P: va 2,and so Y(v) can be considered independent of J. Provided
the laser-line profile overlaps the absorption-line profile inthe same way for both transitions, G1 = G 2 . The overlap in-
tegral will vary throughout the flowfield due to variations inpressure and temperature, but will remain independent of J.
For vibrational measurements the Doppler width increases
by 8% between 225 and 245 nm which causes the overlap
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P ip er. 20
integral to increase by 2.2%. This produces measured vi-
brational temperatures which are systematically high by
+0.4%. From the above considerations and the fact thatC' = 1, it follows that C = 1. Provided that the assump-
tions about the NO spectroscopy are valid, then the main
concern here is that the laser is tuned to the transition in
the same manner for both lines.

Ideally one would prefer to test these assumptions by cali-
brating the whole system at a range of known temperatures.
A suitable calibration device operating at similar pressures
and temperatures to the shock tunnel flow is difficult to find.
A continuously running device might at least enable Boltz-
mann plots to be obtained where deviations from a straight
line may indicate systematic errors due to the measurement
system. In the current work, with no such device available,
the system was tested by performing measurements in the
shock-tunnel test section filled with a static NO/N2 mixture
at room temperature. The main difficulty this presented
was due J-dependent attenuation of the laser beam along
the 150-mm beam path from the entrance window to the
imaged region. Only when transitions with similar beam at-
tenuation were chosen did the measured temperatures agree
with the ambient temperature.

The above analysis ignores the effect of laser-mode fluc-
tuations on the overlap integral. The radiation contains
longitudinal modes and the amount of radiation in each
mode changes from pulse-to-pulse. If the homogeneous ab-
sorption linewidth is much greater than the laser linewidth
these fluctuations would have little impact. All the modes
would fall under the absorption profile. For a dye-laser
cavity of 30 cm, the cavity-mode spacing is 0 . 0 17 cm ~ A ,

which corresponds to 11 modes excited under the 0 . 18 cm-
1FWHM laser profile. It should be noted that the fluc-

tuations may be reduced by normalising the fluorescence
images by LIF measurements performed simultaneously in
a separate reference cell. Therefore each laser pulse can be
corrected for overlap-integral fluctuations. This approach
was used elsewhere 21 to reduce the standard deviation in
temperature measurements by a factor of 3 in compari-
son with energy corrections alone. In the current work the
pressures are quite low and the freestream homogeneous ab-
sorption linewidth is —0.02 cm- only marginally larger
than the mode spacing. Hence, mode fluctuations cause
large variations in the measured shock-tunnel fluorescence
signals. Also, the fluorescence images were normalised only
by the total laser energy. From 50 tunnel runs the stan-
dard deviation of the fluorescence signal was found to be
—25%. Averaging 5 to 8 images for each transition helps

Tab le 1 The calculated freestream conditions at 285 mm
from the nozzle throat . 1sat was determined experimen-tally.

Parameter Freestream
Temperature (K) 3 9 6
Pressure (kPa) 4 . 4
Doppler FWHM (cm-1) 0 . 11
Collision FWHM (cm-

^
) 0 . 02

Collision shift (cm-1) -0 . 006
Overlap integral G (cm) 3 . 9 4
Collisional quenching rate Q (s-1) 3 . 8  x 

1 0 6
RET rate (s-1) 4 . 0 x 1 0 8
Fluorescence lifetime (ns) 11 4
Saturation irradiance Isat (kW/cm2) 1 60 ± 22

to reduce the influence of these fluctuations and leads to an
estimated uncertainty in the rotational temperature of 4%
(due to laser-mode fluctuations alone).

An alternative way to calibrate a LIF image is to use a
known temperature somewhere in the image. In supersonic
flows, this calibration point can be obtained from the stag-
nation point on a body or alternatively from the freestream
temperature, if either is known. Another technique which
measures accurately at a single point may also be used, for
example, single-pulse/single-point broadband CARS ther-
mometry. 8

Ther mometry St rategy for Current Work
The format for the experiments was as follows. The lightfrom a single narrowband laser system was formed into a

sheet and used to probe the shock tunnel flow. An in-
tensified CCD camera collected the fluorescence signal at
right angles to the sheet. Only one image was obtained per
tunnel run. To make temperature measurements, different
absorption transitions were probed on separate tunnel runs.
Generally eight images were produced for each transition,
and averaged. The temperature thus determined is an av-
erage of the flow conditions for that series of shock tunnel
runs.

The excitation scheme employed involves excitation of NO
through the 

A
2 E+ ^__ X 2 H (vII 0) band at 225 nm (see

Fig. 1). Fluorescence is then collected from the 
v' =0 

—^
v"=2,3 and 4 vibrational bands by spectrally filtering the
fluorescence with reflective filters. Detection at the exci-
tation wavelength is avoided to prevent contributions to
the signal from laser scatter. Furthermore, fluorescence
transitions ending in the less-populated vibrational bands
(v" > 1) are preferred to reduce the influence of fluores cen ce
trapping, which occurs when fluorescence photons are reab-
sorbed by molecules between the interaction-volume and the
detector. Broadband-fluorescence detection was employed
to collect the fluorescence from all the rotational levels pop-
ulated by collisions and not just the laser-coupled level. 2
This has two advantages. First, collecting all the fluores-
cence gives higher fluorescence intensities. Second, most
modern lasers have a high degree of polarisation which can
make the fluorescence from the laser coupled level highly
anisotropic.22 The levels populated by RET have reduced
anisotropy due to depolarising collisions and thus collect-
ing the broadband fluorescence significantly reduces these
effects.
PLIF Trans ition Selec tion

The freestream conditions were calculated using thequasi-one-dimensional nozzle flow code STUBE as described
in the section below on flow modelling. These conditions
were then used to calculate the various spectroscopic quanti-
ties that influence the selection of transitions. For example,
at the estimated freestream temperature and pressure, the
absorption linewidths are small ( 0 . 11 cm-') and therefore a

RET
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F ig. 2 The T 2 free-piston shoc k tunnel.
Tab le 2 Trans itions selec ted for ther momet ry.
v" Transition

J"
Frequency

(cm-') Fj(cm-') G,(cm- ' )
a	 0 OP'2 2.5 44069.416 73.58 9 48 . 66b	 1 R2 2.5 42229.348 73.41 2 8 24 . 76
c 	 2 SR2' 8.5 40562.179 71.37 46 7 2 . 6 8d	 0 R2 23.5 44382.109 1045.85 9 48 . 66
e 	 1 R2 23.5 42516.527 1035.33 2 8 24 . 76

varying the laser energy to achieve the same level of satura-
tion on each transition (I/Isat - 2%). Many lines in the NO
spectrum consist of overlapping line pairs, where two tran-
sitions originate from the same lower level but terminate on
closely spaced upper levels. The separation of these upper
levels is determined by the spin-rotation splitting constant
of the A

2 E+ state. These line-pairs can be used for ther-mometry if saturation is negligible, as in Ref. 10, but in thecurrent work they were avoided because negligible satura-
tion could not be assured.

Flow Modell ing and the Facil ity
Table 3 Summary of flow conditions. All values are cal-culated except for the shock speed and reservoir p ressurewhich were measured. The nozzle-exit conditions aregiven at 285 mm from the nozzle throat. Uncerta intiesare determined by varying the input parameters to thecodes.

Nozzle-reservoir conditions (from ESTC):
us 

Shock speed (km/s) 2.34 ± 0 . 02
Po Pressure (MPa) 27.9 ± 0 . 7To Temperature (K) 4430 ± 50
po 

Density (kg/m3) 21.2 ± 0 . 5
ho Enthalpy (MJ/kg) 5.58 ± 0 . 0 8
Nozzle-exit conditions (from STUBE):P. Static pressure (kPa) 4.36 ± 0 . 2
T. Temperature (K) 417 ± 1 0
p. Density (kg/m3) 0.0353 ± 0 . 0 8u. Velocity (km/s) 3.11 ± 0 . 02
Mfroz en Frozen Mach number 7.74 ± 0 . 02
Vibrational freezing temperatures:TN2 (K)	 2 1 50T ,O 2 (K)	 1 3 8 0TN O (K)	 6 70

large number of lines were well isolated. A summary of the
freestream conditions appears in Table 1.

Lines were chosen on the basis of: a large value of sep-
aration in ground state energies to maximise temperaturesensitivity; isolation from nearby lines; minimal attenuation
of the laser beam; minimal saturation of the transition; and
a signal strength above the minimum detectable signal level
of the detector. The transitions selected are shown in Ta-
ble 2. All the transitions have very low beam attenuationand are well isolated. Transitions with similar FJ values
were chosen so that vibrational temperature measurementscould also be made.

The saturation irradiance Isat is defined as the laser ir-radiance I at which the LIF signal Ssat has reduced to
half the value it would have in the absence of satura-
tion, or its linear value S linear .

3 
This can be written as

Ssat = Slinear ( 1 / ( 1 + I /Isat)). The influence of saturation is
minimized by choosing transitions in weak branches and by

The nozzle-reservoir conditions were calculated using theone-dimensional Equilibrium Shock Tube Code (ESTC). 23
ESTC uses the initial shock tube fill pressure and tem-
perature, test gas composition, measured shock speed, and
measured reservoir pressure to determine the reservoir tem-
perature. This temperature is then used in the quasi-one-dimensional inviscid nozzle-flow code STUBE.24 One-
dimensional codes are very useful as engineering tools since
they provide reasonably accurate solutions in only a few
seconds.

STUBE was modified to include a simple vibrational-
freezing model. The vibrational-relaxation time was cal-
culated using the theory of Landau and Teller and the
constants from Ref. 25. Using this relaxation time it was
possible to determine the point during the nozzle expansion
at which the vibrational temperature freezes. A suddenfreezing criterion is imposed and the vibrational temper-ature held constant for the remainder of the expansion.
The model accounts only for vibrational-translation (V-
T) energy transfers and vibrational-vibrational (V-V) en-
ergy transfers are ignored. Due to limited availability of
relaxation-rate data, the Landau-Teller rate constant for
NO-N2 collisions was assumed to be the same as that for
NO-NO collisions. However, the relaxation rate for NO -NO
collisions is greater than that for the NO-N2 collisions. 26
The model therefore overestimates the relaxation rate of
NO and thus underpredicts the NO vibrational freez ingtemperature. This has little effect on the other calculatednozzle-exit parameters since NO is a minority species in the
current experiment. It does, however, provide a point of
comparison with the experimentally measured NO vibra-
tional temperature.

Figure 2 shows a schematic of the T2 shock tunnel.' A1.20-kg piston is free to move inside the 3.1-m compres-
sion tube which has an internal diameter of 76 mm. The
shock tube is 1.98 m in length and has an internal diam-
eter of 21 mm. Attached to the end of the shock tube isa converging-diverging nozzle which exits into a test sec-
tion which has optical access through 4 window ports. For
the current experiments, the primary diaphragm was madefrom 0.74-mm-thick mild steel which has a burst pressure
of 46.9 MPa. The secondary diaphragm was made from0.025-mm-thick mylar. The present study employed a 7 . 5 0
half-angle axisymmetric conical nozzle. The throat of the
nozzle is 6.35 mm in diameter, the axial length of the ex-
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panding section is 255 mm and the nozzle-exit diameter is
73.6 mm. A pitot-pressure survey was conducted at the noz-zle exit to estimate the size of the inviscid core. A reduced
nozzle angle of 7.0° was used with STUBE to account for
the effect of the boundary layers on the nozzle walls.

The tunnel was operated with a helium/argon driver
(81.3 kPa He, 37.3 kPa Ar) to obtain tuned-piston oper-
ation. 27, 2a The shock tube was filled with 100 kPa of a
mixture of 1.1% O2 in N2 at 293 K. The piston is drivenby air from the high-pressure reservoir which is filled to4.34 MPa just prior to the shot. When the piston is released
it is propelled down the compression tube, compressing the
driver gas and causing the diaphragm to rupture. A shock
wave propagates through the test gas in the shock tube and
its speed is measured by three timing transducers along itslength. The transducers are placed at 1281, 316 and 11 mm
from the nozzle inlet. The speed computed based on the
shock transit time between the first two transducers was
2.49 km/s and between the last two it was attenuated to
2.34 km/s due to viscous effects. The shock speed is ex-pected to decrease rapidly near the start of the shock tubeand be relatively constant by the time it gets to the nozz le
inlet. Hence, the value of 2.34 km/s was used in calculating
the nozzle-reservoir conditions. The shock wave reflects at
the shock tube end producing a high pressure and temper-
ature reservoir of test gas. The measured nozz le-reservoir
pressure was 27.9 MPa. From these values the reservoir tem-
perature was calculated using ESTC to be 4430 K, and the
total enthalpy was 5.8 MJ/kg. The conditions calculated
using STUBE at 285 mm from the nozzle throat are shown
in Table 3.

Exp eriment
The experimental arrangement is shown in Fig. 3. The

laser source is a frequency-doubled excimer-pumped dyelaser producing up to 6 mJ of radiation at 225 nm, with
a linewidth of 0 . 1 8 cm-1. The pump laser was a XeCl ex-
cimer laser (Lambda Physik, EMG 150 ETS) operated asan unstable resonator, and produced approximately 250 mJat 308 nm. The dye laser (Lambda Physik, Scanmate II)

was operated with different Coumarin laser dyes (Lamb-dachrome LC4500, 4700, 4800) to produce 40 mJ of tunable
narrowband radiation between 450 and 490 nm. This was
then frequency doubled in a BBO I crystal to produce about
6 mJ of UV light between 225 and 245 nm. Approximately
10% of the laser radiation was split off with a beamsplitter
(uncoated fused silica) and directed through a small tur-bulent flame to perform LIF excitation scans. The NO is
produced by entrainment of the air in the flame. The LIF
was collected at right angles to the beam and then imaged
onto a 0.5-m spectrometer. The spectrometer was operatedas a 9-nm bandpass filter which allowed detection of LIF
from the NO (0,1) or (0,2) vibrational bands while blocking
the very strong OH fluorescence at 308 nm. The flame was
chosen (rather than a reference cell containing NO) so that
excitation scans of the v"= 1 and 2 vibrational bands of NO
could also be performed.

The remaining laser radiation passes through a periscopeto bring the beam to the same level as the shock-tunnel testsection. An 80-mm wide sheet was produced using a 20-
mm-focal-length cylindrical lens and a large spherical lens
(1000-mm focal length, 100-mm diameter). The variation in
energy across the laser sheet was measured simultaneouslyby use of a dye cell (100-mm length) and a standard CCD
camera (Pulnix TM-760).29 This energy distribution mea-surement was used to correct the PLIF image obtained on
the same laser pulse. The laser sheet was focussed in front
of the test section so that the sheet thickness at the test sec-tion was 0.8 mm. This reduced the possibility of saturation.
The total beam energy was monitored with a back reflectionfrom a prism using a UV-sensitive photodiode. The cylin-
drical lens overexpands the beam considerably so that the
total sheet energy was reduced to only —60 µJ. This corre-
sponds to an irradiance of 3.7 kW/cm2, where we have used
a sheet area of 0.64 cm2 and assumed a laser pulse duration
of 25 ns.

The saturation irradiance was measured using a staticNO/N2 mixture in the shock tunnel test section, as de-scribed in the section on calibration. Making allowance for
the change in conditions between this static measurement
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and the freestream conditions, the estimated saturation ir-radiance for the freestream is 160 kW/cm 2 . Therefore the
laser irradiance used for the experiment was only 2% or the
saturation irradiance (I/Isa,t — 0.02).

The fluorescence from the test section was collected at
right angles to the sheet and reflected from two mirrors
and into the intensified CCD camera. The mirrors are
reflective filters, designed to maximise the fluorescence sig-
nal and minimize flow luminosity. The detector used for
these experiments was an in-house assembled intensified
CCD camera. 30 The CCD camera (EEV Photon, P/N
P45580/V5.3/PHO) is an 8-bit asynchronous device which
is triggered separately from the intensifier. The fluorescence
lifetime in the freestream is —114 ns and so an intensifier
gate of 650 ns was used. This allows greater than 99% of
the signal to be collected and about 40 ns between the start
of the gate and the laser pulse to account for time jitter
in the triggering system. Several `laser off' shots were also
performed to verify that there was no flow luminosity.
Procedure

To ensure an accurate measurement of the laser energy
used in the experiment, it was necessary to ensure that
the test-section windows were cleaned prior to each tun-
nel run. The tunnel was then reloaded and pumped to less
than 25 Pa. A LIF excitation scan was then performed in
the flame which ensured that the laser was tuned to the
correct NO transition. The laser was run at 1 Hz while the
tunnel was being filled. Immediately before firing (< 2 s),the tunnel operator stopped the laser via a remote switch
next to the firing valve. After the firing valve was opened,
the nozzle-reservoir pressure transducer detected the shock
arrival at the end of the shock tube and the laser was fired
350 ps later. This delay was chosen to coincide with flowestablishment in the nozzle and prior to the expected ar-
rival time of driver gas. The intensified camera and the
sheet monitoring camera were also triggered from the nozzle-
reservoir pressure transducer after a suitable delay.

Results and Discussion
The imaged region is defined by the box in Fig. 4 which

shows a rotational temperature map at the nozzle exit. The
flow is from left to right. For these experiments, only half of
the freestream was imaged, and this 50x52-mm region in-
corporates the flow centreline. The camera actually views a
55-mm wide region, but the laser sheet is reduced to 50 mm

Fig. 5 A collection of LIF images showing flow non-
uniformities. The position of each image relative to the
nozzle is shown on Fig 4.

Fig. 6 Averaged LIF images of the freestream. The
flow is from left to right. Images (a), (b) and (c) are for
the low-J lines and show the same characteristic shape.
Images (d) and (e) are for the high-J lines. Image (f)
is the signal produced when the laser is detuned from a
transition at 245 nm. Image (c) includes the correction
for the non-resonant background (f).

so that the edges of the sheet observed in the LIF image can
be correlated with the sheet-energy correction image. The
imaged region starts at 16 12 mm from the nozzle exit and
includes a portion of the centreline as well as the edge of the
core flow. Here, allowance has been made for the recoil of
the shock tunnel when it is fired, which causes the nozzle to
move 8 f 1 mm further away from the imaged region. Notethat the bottom part of the image outside the box is simply
the reflection of the top portion of the image.

For a uniform freestream flow, a uniform fluorescence
signal is expected. However, during the course of the ex-
periments, several flow non-uniformities were observed (see
Fig. 5), particularly along the centreline of the flow. Regions
of no LIF signal were observed in approximately one third
of the 68 tunnel runs performed. They have the appearance
of small turbulent clouds of gas.

Several explanations exist for these nonuniformities.
First, these dark regions may be explained as pockets of
driver gas that have arrived prematurely, perhaps due to
instabilities at the contact surface or jetting of driver gasinto the nozzle-reservoir region via shock wave/boundary
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layer interaction. 31,32 The driver gas has no NO in it and
hence produces no LIF signal. Second, because the NO
used in the current experiment is generated in the shock-
reflection process, there exists a boundary layer of test gas
on the shock-tube walls without NO. This boundary layer
may mix with the test gas in a similar method to the shock
wave/boundary layer interaction described above. Third,
the lack of signal may be due to particulate matter obstruct-
ing the fluorescence between the plane of the laser sheet and
the exit window. It is known that the nozzle-boundary layer
entrains particulate matter from the nozzle walls since this
has been observed by Mie scatter when detecting at the laser
wavelength (see Fig. 6(f)). However, if this was the cause
then one would also observe sudden drop outs in the laser
beam which would cause streaks in the fluorescence signal.
These are never observed so the it is more likely one of the
first two scenarios is correct. Attempts to seed the driver gas
with NO produced negative resultswhich are inconclusive.

It is interesting to note that very little mixing has oc-
curred, as indicated by the high contrast of some of the
`dark-gas' pockets. At later test times (>350 µs), LIF im-ages display a gradual uniform decrease in intensity which
may be due to either a drop in the nozzle-reservoir pressure
and hence nozzle-exit density, or an increased proportion of
driver gas uniformly mixed with the test gas, or both.

Individual images showing flow non-uniformities were re-
jected from the temperature analysis. Each image obtained
from a single tunnel run was corrected for camera back-
ground offset, absolute laser energy, and the variation of the
laser energy across the image. The corrected images for each
transition were then averaged, typically 8 images per tran-
sition. These averaged images are shown Fig. 6. Because
of the limited dynamic range of the camera and the signif-
icant variation in fluorescence signal intensities, especially
from different vibrational bands, the camera intensifier gain
was varied for different transitions. The intensifier gain con-

trol was therefore calibrated at the same time that linearity
tests were performed on the intensifier. This explains the
intensity -scaling factors at the bottom right of each image
in Fig. 6. For the six images (a f)in Fig. 6 the gains were
6.5, 7.2, 7.5, 6.8, 7 .2 and 7 .5, respectively. Images taken at
higher gains, such as image (c), show significant shot noisedespite averaging. The reflective filters efficiently block the
laser wavelength when excitation is performed in the (0,0)
and (0,1) bands. However, elastically-scattered laser light
is not filtered out by the detection system for excitation of
the (0,2) band near 245 nm. To account for this, several
runs were performed with the laser at 245 nm but detuned
from any NO transitions. The average of 6 such images is
shown in Fig. 6(f). The signal occurs predominantly at the
edge of the core flow and is most likely due to Mie scatter-
ing from particulate matter that has been entrained in the
nozzle-wall boundary layer. There is no signal in the central

Fig. 8 Rotational temperatures along the centreline of
the flow compared with STUBE calculations.

core of the flow indicating it is relatively clean of particu-
late matter. Image (c) is a corrected LIF image obtained by
subtracting image (f) to account for the elastically -scattered
laser light.

A rotational temperature map was calculated by taking
the ratio of images (a) and (d) in Fig. 6 and using Eq . 10.
The temperature map produced is shown in Fig. 4. However,
a more quantitative assessment can be made by examining
the vertical cross sections given in Fig. 7. Each cross sec-
tion was made by averaging a 50-pixel-wide vertical slice
through the image. The pixel density was 9.2 pixels/mm,
and so this corresponds to approximately a 5-mm wide slice.
The data was further smoothed by running a 20-pixel-wide
(2 mm) integration window through the data. The cross
sections are at 10-mm intervals and clearly show the de-crease in temperature with distance from the nozzle exit.
Note that the data shown in Fig. 7 greater than + 10 mmfrom the centreline is a reflection of the data from below
-10 mm. The first slice, corresponding to 274-mm from the
nozzle throat, shows a marked temperature rise at the edgeof the core flow. This temperature rise is caused by vis-
cous dissipation 33 in the nozzle-wall boundary layer, and on
closer examination of the image in Fig. 4, can be seen to
agree very well with the position of the nozzle wall. There
is a small temperature rise on the centreline which may be
caused to some upstream disturbance. Slices taken further
downstream show a more uniform temperature profile. A
second temperature map was made from transitions in the(0,1) band (images (b) and (e) of Fig. 6) and showed similar
characteristics, however the signal-to-noise ratio was signif-
icantly poorer.

Figure 8 shows streamwise temperature measurements
compared with ST UBE calculations. Each experimental
data point was obtained by averaging over a 2 x 10 mm
region at several points along the flow centreline. The two
limiting cases for vibrational relaxation are shown to indi-
cate the confidence interval for the calculations. The upper
curve represents the case when the vibrational temperature
is equilibrium with the kinetic temperature while the lower
curve indicates the extremely unlikely case where the vibra-
tional temperature is frozen at the nozzle-reservoir value.
The solid curve represents the case obtained by letting the
Nz vibrational temperature freeze at 2150 K during the noz-
zle expansion, as explained above. Good agreement with
STUBE is obtained with the temperature from the v"= 0
level but the temperature from the v"=1 level is high by
30 K.

Temperature Uncertainties
The major uncertainty in the freestream measurement

is due to fluctuations in the laser spectral profile. More
precisely, it is due to the fluctuation in the distribution of
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energy amongst the cavity modes of the laser. The uncer-
tainty in a single image due to laser-mode fluctuations was
determined by considering the data from all tunnel runs tobe 25%. Averaging 8 images gives an uncertainty of 9.4%
for each averaged image in Fig. 6. For two-line thermome-
try, we use the ratio of two such images and therefore the
uncertainty in the ratio is vf2- greater. The uncertainty in
the temperature bT is related to the signal ratio R according
to bT = kT bR

T DE R	
(15)

where DE is the difference between the energy levels (DE =
FJ 1 - FJZ). For the freestream rotational-temperature mea-
surements DE 

= 972 cm - 1 , T 450 K and DE /kT 3.25,
and therefore the uncertainty in the rotational temperature
due to laser-mode fluctuations is only 4%. Other sources of
random error include the laser-energy measurements, cam-era gain and gate repeatability, time jitter in the laser
system, laser-tuning inaccuracies and flow repeatability. All
of these uncertainties are negligible in comparison with the
laser-mode fluctuations.

Systematic uncertainties have been reduced or avoided
by careful experiment design and transition selection. We
estimate that beam attenuation, signal interference and sat-
uration produced a combined error of less than 1 K. It
is possible that transition overlaps or other interferences
may occur that are not predicted by the calculations, but
these can only be discovered by temperature verification
experiments. Another systematic error source is due to non-
linearities in the intensified camera system. This a possible
explanation for the different rotational temperatures derived
from the v"= 0 and v"=1 bands. The linearity of the detec-
tor was tested by performing LIF in a static N2/NO mixtureand plotting the integrated LIF intensity against laser en-
ergy. However, the test was ineffective at gains above 7 .0
because shot noise caused a large number of the pixels to
saturate (exceed the 8-bit dynamic range of 255 counts).
The test could only indicate the camera was linear up to
100 counts. Because the signal from the low-J line used for
the v"=1 rotational temperature measurement is stronger
than the high-J line, it is more likely to suffer from satura-
tion effects. A reduced low-J signal would produce a higher
rotational temperature as observed. The signals obtained
from the v"=0 band were measured at lower gains where
the camera was verified to be linear up to 220 counts. To
get agreement between the two measured temperatures the
signal from image (b) would need to be 20% greater.
V ibrational Temperatures

Freestream vibrational temperatures were also deter-
mined from the LIF images shown in Fig. 6. Using the
signals from the v"=0,1 and 2 low- J transitions (a), (b) and
(c) and plotting the expression in Eq. 12 versus Gv,, gives

270	 280	 290	 300	 310	 320
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Fig. 10 V ibrational temperatures along the centreline
of the flow.
a Boltzmann plot, as shown in Fig. 9. From the slope of
this plot we can get the vibrational temperature. A similar
approach is taken to that of the rotational measurements
to reduce shot-noise uncertainties by averaging the tem-
perature over a 2 x 10 mm region. Figure 10 shows thevibrational temperatures at various distances from the noz-
zle exit along the flow centreline. The temperature error
bars are due to laser-mode fluctuations. It is observed from
Fig. 10 that the measured vibrational temperature is signif-
icantly higher than that predicted from the computationalmodel. The temperature is constant with distance from the
nozzle exit indicating that it is frozen. The measured tem-
perature is 785 130 K compared with the value from the
vibrational relaxation model of 6 70 K. The underprediction
of the vibrational freezing temperature was expected due to
the lack of vibrational relaxation data.

The estimated systematic uncertainties for the vibrationaltemperature measurements due to beam attenuation and
signal interference from nearby lines are bTIT 	 + 0. 7%
and 	 +0.3%, respectively. Uncertainties due to satura-tion are negligible because the laser energy was varied to
achieve the same amount of saturation for each transition.The Doppler width decreases by 8.0% between 225 and
245 nm, which causes the overlap integral to increase by
2.2%. This produces measured temperatures that are sys-
tematically high by +0.4%. Combining these uncertainties,
the estimated systematic error for the vibrational measure-
ments is +0.85%, or +7 K.

However, it is also believed that camera nonlinearities
have contributed to lowering the measured vibrational tem-
perature in a similar way to that described for the rotational
temperature measurement. From the Boltzmann plot in
Fig. 9, it can be seen that the signal intensity from thev"=2 level is -35% less than that predicted by a straight
line fit from the v"=0 and 1 signals. Since this signal was
acquired at the highest intensifier gain it is most affected
by camera saturation. A lower v"=2 signal would lead to
a lower observed temperature. In fact if we use only the
first two vibrational levels (v"=0,1) we get a temperature of
-850 K. However, just as with the rotational measurements,we suspect that the v"=1 transitions may also be affected
by camera saturation, so the actual vibrational temperature
may be even higher. Increasing the v"=1 signal by 20% as
described in the rotational measurements above leads to a
temperature of -950 K.

Agreement with CFD
To calculate the nozzle-exit conditions accurate knowl-

edge of the nozzle-reservoir temperature is re quired. Here
we have used the average shock speed measured betweentwo transducers 11 and 316 mm from the nozzle inlet. We
have assumed that this is a good estimate for the shock
speed at the nozzle inlet. If the shock speed is decreas-
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ing at the linear rate along the shock tube than the shock
speed at the nozzle inlet would be only 2.25 km/s, leading
to an underestimate of of the nozzle-reservoir temperature
by 200 K, and nozzle-exit rotational temperature by 30 K.
Furthermore, the calculations for the nozzle-reservoir con-
ditions (using the code ESTC 23 ) make several assumptions
and exclude losses due to viscous, radiation and conductioneffects, driver gas contamination and shock-tunnel impuri-
ties.

If the N2 vibrational-freezing temperature could be mea-
sured, for example with broadband CARS, then it would
be possible to make a reasonable estimate for the nozzle-
reservoir temperature. This would be one method of vali-
dating the assumptions described above used by ESTC. In
related work we measured the temperature at the stagna-
tion point on a hemisphere using PLIF. This work will be
presented elsewhere, but we mention it here since a mea-
surement of the stagnation point temperature would give a
lower bound for the reservoir temperature. The vibrational
temperature of NO at the stagnation point on a hemisphere
was measured to be 45001270 K. Unfortunately the large
uncertainty in this measurement prevents a definitive es-
timate for the reservoir temperature, but it demonstrates
an alternative approach which may aid in validating shock-
tunnel CFD codes.

Conclusions
Planar laser-induced fluorescence of NO has been used tocharacterise the nozzle flow from a free-piston shock tunnel.

Flow non-uniformities have been observed which indicate a
contamination of the test gas by driver gas or test gas from
the boundary layers on the shock tubewalls. This is the first
time to the author's knowledge that such non-uniformities
have been observed. This discovery may have significant
consequences for free-piston shock tunnel research, in par-
ticular in experiments involving combustion research, wherea pocket of driver gas passing through a combustor could
extinguish or considerably affect ignition.

A rotational temperature image was made at the nozzle
exit and shows reasonable agreement with CFD calcula-
tions. Temperatures of 440 1 25 K and 460 1 25 K were
measured at 285 mm from the nozzle throat for transitions
in the v" =0 and 1 vibrational levels. Non-linearities in the
homemade camera system are believed responsible for incon-
sistencies between these two measured temperatures. The
first measurement was performed at lower intensifier gains
where the system's linearity had been validated. The vibra-
tional temperature of NO at the nozzle exitwas measured to
be 785130 K. It is believed that this temperature may actu-ally be as high as 950 K and that camera non-linearities have
caused a systematic error in the measurement. Nonetheless,
the temperature was found to be constant with distance
from the nozzle exit indicating that it is frozen.

We conclude that PLIF is a useful techni que for observing
flow non-uniformities and mapping flowfield distributions.
More work is required to validate its accuracy, however
the problem with camera non-linearities is easily solved
with modern commercial camera systems. Validation of
nozzle-flow codes requires improved knowledge of the nozzle-
reservoir conditions.
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